Ph.D. Supervisors

<table>
<thead>
<tr>
<th>Role</th>
<th>Name of Faculty</th>
<th>Academic Unit in IITD/Institute/University</th>
<th>Email ID (Official)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor 1</td>
<td>Prof. Dhiman Mallick</td>
<td>EE, IITD</td>
<td>dhiman@ee.iitd.ac.in</td>
</tr>
<tr>
<td>Supervisor 2</td>
<td>Prof. Prashant Mishra</td>
<td>DBEB, IITD</td>
<td>pmishra@dbeb.iitd.ac.in</td>
</tr>
</tbody>
</table>

Project requirements (Student qualifications, experience required, etc)

The candidate will be shortlisted based on common shortlisting criteria decided by ScRC (SIRe)

Candidate should have the qualification of B.Tech in Electrical, Electronics, Mechanical, Biotechnology or Materials Engineering, Or MSc. in Physics, Physical Chemistry, and Electronics. Students qualified CSIR/UGC JRF are strongly encouraged to apply. Candidates with any prior knowledge on instrument interfacing by LabView, Python related software, or experience on electric motors, materials synthesis or experience in nanofabrication will be given preference although not mandatory.

Source of fellowship/funding

(CSIR/UGC/DBT/ICMR/ICAR/NEET-PG/DST-INSPIRE/IRD/FITT Project details, if any)

Candidate with his/her own fellowship /institute assistantship

Role of Faculty Members involved:

Supervisor-1

In the proposed project two faculty members (Prof. Mallick and Prof. Goswami) have few overlap areas of research and have broad complementary expertise. The student assigned for this project will have access to both EE and DBEB departmental facilities and various central facilities of IITD. Prof. Mallick’s experience and expertise is in functional material integration, design, modelling, fabrication of MEMS and microfluidics devices, electrical, electromechanical and microfluidic characterization etc. (Interdisciplinary Microsystems Lab)

Supervisor-2

Prof. Prashant Mishra’s expertise is synthesizing drug loaded biodegradable nanoparticles for targeted and enhanced drug delivery, self-assembly based nanopatterning and development of nanodevices for biosensing applications. (Prof. Mishra’s Lab Webpage)