Project Details

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Stroke subtype Classification in Low Resource Settings using Facial Expressions and Physiological Data</th>
</tr>
</thead>
</table>

Project Summary

Stroke is a leading cause of mortality and disability in India. Quick and reliable estimation of the stroke type is key to suitable care and management of stroke patients. There are very few specialists working in rural India and hence diagnosis and recognising type of stroke is challenging. There is no single biomarker available for recognition of stroke or to identify types of stroke.

Our earlier work indicates that it is possible to get good prediction accuracy for stroke type classification by building suitable Al/ML models on the clinical parameters alone. This project aims to extend this work by building more advanced Al/ML models based on computational vision and deep learning for prediction of the stroke type. The project will employ the following additional information to infer about the stroke sub-type: (a) facial expressions in response to emotional stimuli (b) Physiological data.

There are several facial markers (such as facial droop) that are identifying features in stroke patients. Using algorithms from computational vision and deep learning, it might be possible to accurately track facial key-points and derive biomarkers that are predictive of stroke type. The project will explore advanced Al/ML methods for accurate tracking of facial keypoints and using these features to predict the stroke type.

The physiological parameters such as pulse rate, blood pressure, pulse shape, and other measures of pulse based on differential pulse response in different parts of the body may give important clues to the stroke type and sub-type. This project will explore the use of these measures to build an AI/ML based model to help classify the stroke type based on these parameters.

References

Runchey, Shauna, and Steven McGee. "Does this patient have a hemorrhagic stroke?: clinical findings distinguishing hemorrhagic stroke from ischemic stroke." Jama 303, no. 22 (2010): 2280-2286.

Kim, Jinkwon, Tae-Jin Song, Dongbeom Song, Ki Jeong Lee, Eun Hye Kim, Hye Sun Lee, Chung Mo Nam, Hyo Suk Nam, Young Dae Kim, and Ji Hoe Heo. "Brachial-ankle pulse wave velocity is a strong predictor for mortality in patients with acute stroke." Hypertension 64, no. 2 (2014): 240-246.
PhD Supervisors

<table>
<thead>
<tr>
<th>Role</th>
<th>Faculty</th>
<th>Academic Unit in IITD</th>
<th>Email ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor 1</td>
<td>Rahul Garg</td>
<td>Computer Science and Engineering</td>
<td>rahulgarg@cse.iitd.ac.in</td>
</tr>
<tr>
<td>Supervisor 2</td>
<td>Dr. Vishnu VY</td>
<td>Department of Neurology, AIIMS</td>
<td>vishnuvy16@yahoo.com</td>
</tr>
</tbody>
</table>

Project requirements (Student qualifications, experience required, etc)

- Must be B.Tech. in Computer Science, Electronics and Communications, Biomedical Engineering, Mathematics and Computing with good programming abilities and good exposure to fundamentals of Machine Learning and an interest in Biology (specifically Physiology and Neuroscience).
- Students will M.Sc in relevant areas from top institutions with relevant expertise may also be considered

Source of funding (IRD/FITT Project details, if any)

6 months funding available from the project: RP04048G: Machine Learning model for early diagnosis of stroke in resource limited settings

Role of Faculty Members involved:

Prof. Rahul Garg will supervise the AI/ML part of the project. Dr. Vishnu will supervise neurology part of the project.